Total Pageviews

Wednesday, December 22, 2010

NanoParticle

Image showing nanoparticles of an alloy of gold (yellow) and palladium (blue) on an acid-treated …
[Credit: Photo courtesy of Dr. David J. Willock, Cardiff University]nanoparticle, ultrafine unit with dimensions measured in nanometres (nm; billionths of a metre). Nanoparticles exist in the natural world and are also created as a result of human activities. Owing to their submicroscopic size, they have unique material characteristics, and manufactured nanoparticles may find practical applications in a variety of areas, including medicine, engineering, catalysis, and environmental remediation.

Properties, applications, and manufacture

According to the International Organization for Standardization (ISO), a nanoparticle is a discrete nano-object where all three Cartesian dimensions are less than 100 nm. The standard similarly defines two-dimensional nano-objects (i.e., nanodiscs and nanoplates) and one-dimensional nano-objects (i.e., nanofibres and nanotubes). Atomic bond lengths are reached at 0.1 nm, and for this reason a lower limit of 1 nm is often quoted for nanoparticles. This size range from 1 to 100 nm overlaps considerably with that previously assigned to the field of colloid science from 1 to 1,000 nm which is sometimes alternatively called the mesoscale. Thus, it is not uncommon to find literature that refers to nanoparticles and colloidal particles in equal terms. The difference is essentially semantic for particles below 100 nm in size.

There are three major physical properties of nanoparticles, and all are interrelated: (1) they are highly mobile in the free state (e.g., in the absence of some other additional influence, a 10-nm-diameter nanosphere of silica has a sedimentation rate under gravity of 0.01 mm/day in water); (2) they have enormous specific surface areas (e.g., a standard teaspoon, or about 6 ml, of 10-nm-diameter silica nanospheres has more surface area than a dozen doubles-sized tennis courts; 20 percent of all the atoms in each nanosphere will be located at the surface); and (3) they may exhibit what are known as quantum effects. In addition, nanoparticles can be classified as hard (e.g., titania [titanium dioxide], silica [silica dioxide] particles, and fullerenes) or as soft (e.g., liposomes, vesicles, and nanodroplets). Thus, nanoparticles have a vast range of compositions, depending on the use or the product.

In general, nanoparticle-based technologies centre on opportunities for improving the efficiency, sustainability, and speed of already existing processes. This is possible because, relative to the materials used traditionally for industrial processes (e.g., industrial catalysis), nanoparticle-based technologies use less material, a large proportion of which is also already in a more “reactive” state. Other opportunities for nanoparticle-based technologies include the use of nanoscale zero-valent iron (NZVI) particles as a field-deployable means of remediating organochlorine compounds, such as polychlorinated biphenyls (PCBs), in the environment. NZVI particles are able to permeate into rock layers in the ground and thus can neutralize the reactivity of organochlorines in deep aquifers. Other applications of nanoparticles are those that stem from manipulating or arranging matter at the nanoscale to provide better coatings, composites, or additives and those that exploit the particles’ quantum effects (e.g., quantum dots for imaging, nanowires for molecular electronics, and technologies for spintronics and molecular magnets).

Nanoparticles are also under investigation for their potential use in health and medical products. For example, they are being developed to serve as molecules for drug delivery to targeted tissues. In addition, a sunscreen known as Optisol, invented at the University of Oxford in the 1990s, was designed with the objective of developing a safe sunscreen that was transparent in visible light but that retained ultraviolet blocking action on the skin. The ingredients that were traditionally used in sunscreens were based on large particles of either zinc oxide or titanium dioxide or contained an organic sunlight-absorbing compound. However, these materials were not satisfactory; zinc oxide and titanium dioxide are very potent photocatalysts, and in the presence of water and sunlight they generate free radicals, which have the potential to damage skin cells and DNA (deoxyribonucleic acid). Scientists proceeded to develop a nanoparticle form of titanium oxide that contained a small amount of manganese. Studies indicated that the nanoparticle-based sunscreen was safer than sunscreen products manufactured using traditional materials. The improvement in safety was attributed to the introduction of manganese, which changed the semiconducting properties of the compound from n-type to p-type, thus shifting its Fermi level, or oxidation-reduction properties, and making the generation of free radicals less likely.

Nanoparticles are made by one of three routes: by comminution (the pulverization of materials), such as through industrial milling or natural weathering; by pyrolysis (incineration); or by sol-gel synthesis (the generation of inorganic materials from a colloidal suspension). Comminution is known as a top-down approach, whereas the sol-gel process is a bottom-up approach. Examples of these three processes (comminution, industrial milling, and sol-gel synthesis) include the production of titania nanoparticles for sunscreens from the minerals anatase and rutile; the production of fullerenes or fumed silica (not to be confused with silica fume, which is a different product); and the production of synthetic (or Stöber) silica, of other “engineered” oxide nanoparticles, and of quantum dots. For the generation of small nanoparticles, comminution is a very inefficient process.

Detection, characterization, and isolation

Transmission electron microscopy (TEM) can be used to detect and characterize nanoparticles, such …
[Credit: Courtesy Professor Joseph Hughes, Georgia Institute of Technology/John Fortner, Rice University]The detection and characterization of nanoparticles presents scientists with particular challenges. Being of a size that is at least four to seven times smaller than the wavelength of light means that individual nanoparticles cannot be detected by the human eye, and they are observable under optical microscopes only in liquid samples under certain conditions. Thus, in general, specialized techniques are required to see them, and none of these approaches is currently field-deployable.

Techniques to detect and characterize nanoparticles fall into two categories: direct, or “real space,” and indirect, or “reciprocal space.” Direct techniques include transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). These techniques can image nanoparticles, directly measure sizes, and infer shape information, but they are limited to studying only a few particles at a time. There are also significant issues surrounding sample preparation for electron microscopy. In general, however, these techniques can be quite effective for obtaining basic information about a nanoparticle.

Indirect techniques use X-rays or neutron beams and obtain their information by mathematically analyzing the radiation scattered or diffracted by the nanoparticles. The techniques of greatest relevance to nanoscience are small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), along with their surface-specific analogues GISAXS and GISANS, where GI is “grazing incidence,” and X-ray or neutron reflectometry (XR/NR). The advantage of these techniques is that they are able to simultaneously sample and average very large numbers of nanoparticles and often do not require any particular sample preparation. Indirect techniques have many applications. For example, in studies of nanoparticles in raw sewage, scientists used SANS measurements, in which neutrons readily penetrated the turbid sewage and scattered strongly from the nanoparticles, to follow the aggregation behaviour of the particles over time.The isolation of nanoparticles from colloidal and larger matter involves specialized techniques, such as ultra centrifugation and field-flow fractionation. These laboratory-based techniques are normally coupled to standard spectroscopic instrumentation to enable particular types of chemical characterization.

Nanoparticles in the environment

Nanoparticles occur naturally in the environment. For example, the sea emits an aerosol of salt that ends up floating around in the atmosphere in a range of sizes, from a few nanometres upward, and smoke from volcanoes and fires contains a huge variety of nanoparticles, many of which could be classified as dangerous to human health. Dust from deserts, fields, and so on also has a range of sizes and types of particles, and even trees emit nanoparticles of hydrocarbon compounds such as terpenes (which produce the familiar blue haze seen in forests).

Human-made nanoparticles are emitted by large industrial processes, and in modern life it is particles from power stations and from jet aircraft and other vehicles (namely those powered by internal combustion engines; car tires are also a factor) that constitute the major fraction of nanoparticle emissions. Types of nanoparticles that are emitted include partially burned hydrocarbons (in soot), ceria (cerium oxide; from vehicle exhaust catalysts), metallic dust (from brake linings), calcium carbonate (in engine lubricating oils), and silica (from car tires). However, these emission levels are still considered to be lower than the levels of nanoparticles produced through natural processes. Indeed, recent human-made particles contribute only a small amount to air and water pollution.

Understanding the relationship between nanoparticles and the environment forms an important area of research. There are several mechanisms by which nanoparticles are believed to affect the environment negatively. Two scenarios that are under investigation are (1) that the mobility and sorptive capacity of nanoparticles (natural or human-made) make them potent vectors (carriers) in the transport of chemical pollutants (e.g., phosphorus from sewage and agriculture), particularly in rivers and lakes, and (2) that some nanoparticles are able to reduce the functioning of (and may even disrupt or kill) naturally occurring microbial communities, as well as microbial communities that are employed in industrial processes (e.g., those that are used in sanitation processes, including sewage treatment).

Nanoparticles also can have beneficial impacts on the environment and appear to contribute to natural processes. Thus, in addition to the potential use of nanoparticles to remove chemical contaminants from the environment, scientists are investigating how nanoparticles interact with all life forms from fungi to microbes, algae, plants, and higher-order animals. This type of study is essential not only to improving scientists’ knowledge of nanoparticles but also to gaining a more complete understanding of life on Earth, since the soil is naturally full of nanoparticles, in a richly diverse environment.

Health effects of nanoparticles

Humans have evolved to cope with most naturally occurring nanoparticles. However, nanoparticles generated as a result of certain human activities account for many premature deaths due to lung damage. These activities include tobacco smoking and fires, particularly fires from the types of internal cooking stoves used in developing countries; these stoves can emit fine particles and lead to early mortality, especially among women who work near the stoves routinely.

With the exception of research on smoking and exposure to internal cooking stoves, laboratory and clinical investigations of the effects of nanoparticles on health have been somewhat controversial and largely inconclusive. Most studies in animals have involved nanoparticle inhalation, and the dosages have been very large. The results of these studies have indicated that large quantities of nanoparticles can cause cellular damage in the lungs, with lung cells absorbing the particles and becoming damaged or undergoing genetic mutation. However, the health effects of typical exposure levels—those that are encountered by most persons during daily activities remain unknown. Nonetheless, there is a general awareness of the problems that might occur upon excess exposure to nanoparticles, and thus most manufacturers of such particles take serious precautions to avoid exposure of their workers. Efforts also have been made to educate the public in the use of nanoparticle products. The existence of pressure groups has also helped to ensure nanoparticle safety compliance among manufacturers.

No comments:

Post a Comment